SECURITY REPORT 143

101 | Οκτώβριος 2023 Τεχνητή Νοημοσύνη SECURITY REPORT Η βαθιά μάθηση χρησιμοποιείται για την οπτική ανίχνευση αντικειμένων, ενώ τα Video Analytics για να καθορίσουν το τι ακριβώς κάνει το αντικείμενο αναφοράς που επιτηρεί μία κάμερα. 1 Για τους αλγόριθμους βαθιάς μάθησης, τα μη δομημένα δεδομένα είναι πολύ πιο δύσκολα στην επεξεργασία, ωστόσο, οι εν λόγω αλ- γόριθμοι μπορούν να τα καταφέρουν εκπληκτικά στην αναγνώριση εικόνας, όταν εκπαιδεύονται αρκετά. Αυτό συμβαίνει επειδή τα τε- χνητά νευρωνικά δίκτυα μπορούν να μάθουν πολύπλοκα μοτίβα σε δεδομένα που θα ήταν δύσκολο να μάθουν οι παραδοσιακοί αλγόριθμοι μηχανικής μάθησης. Η μηχανική μάθηση έχει αναπτυχθεί με βάση την ικανότητα χρήσης των υπολογιστών να ανιχνεύουν τα δεδομένα για ένα αντικείμενο, ακόμα και αν δεν έχουμε μια θεωρία για το πώς μοιάζει το αντικείμενο αυτό. Επειδή χρησιμοποιεί συχνά μια επαναληπτική προσέγγιση για να μάθει από τα δεδομένα, η μηχανική μάθηση μπορεί εύκολα να αυτοματοποιηθεί και επα- ναλαμβάνεται έως ότου βρεθεί ένα ισχυρό πρότυπο. Πού θα συναντήσουμε τη μηχανική μάθηση; Οι περισσότερες βιο- μηχανίες που επεξεργάζονται μεγάλες ποσότητες δεδομένων, ανα- γνωρίζουν την αξία της τεχνολογίας της μηχανικής μάθησης. Με τη συλλογή πληροφοριών από αυτά τα δεδομένα που πραγματο- ποιείται συχνά σε πραγματικό χρόνο, οι οργανισμοί μπορούν να εργάζονται πιο αποτελεσματικά ή να αποκτούν πλεονέκτημα έναντι των ανταγωνιστών τους. Έτσι, την εν λόγω τεχνολογία θα τη συ- ναντήσουμε σε χρηματοπιστωτικές υπηρεσίες, όπου οι τράπεζες και άλλες επιχειρήσεις του χρηματοοικονομικού κλάδου χρησιμο- ποιούν τεχνολογία μηχανικής μάθησης για δύο βασικούς σκοπούς: τον εντοπισμό σημαντικών πληροφοριών σχετικά με τα δεδομένα και την πρόληψη μίας απάτης. Επίσης, η μηχανική μάθηση είναι μια ταχέως αναπτυσσόμενη τάση στον κλάδο της υγειονομικής περίθαλψης, χάρη στην εμφάνιση φορητών συσκευών και αισθητήρων που μπορούν να χρησιμοποιούν δεδομένα για την αξιολόγηση της υγείας ενός ασθενούς σε πραγ- ματικό χρόνο. Η τεχνολογία μπορεί επίσης να βοηθήσει τους ειδικούς της ιατρικής να αναλύουν δεδομένα για τον εντοπισμό τάσεων ή «κόκκινων σημείων» που μπορεί να οδηγήσουν σε βελ- τιωμένες διαγνώσεις και θεραπεία. Άλλες εφαρμογές της εν λόγω τεχνολογίας θα συναντήσουμε σε βιομηχανικές και κυβερνητικές εγκαταστάσεις, στο λιανεμπόριο, στις μεταφορές κ.λπ. Επιτυγχάνοντας περισσότερα με λιγότερα: Η βαθιά μάθηση έχει επιτρέψει στις ομάδες ασφαλείας σε όλο τον κόσμο να είναι σε θέση να κάνουν αποδοτικότερα τη δουλειά τους, ακόμα και όταν οι διαθέσιμοι πόροι είναι περιορισμένοι. Η χρήση μίας και μόνο κάμερας με αναγνώριση αντικειμένων μπορεί από μόνη της να είναι αρκετή για τη διαλεύκανση μίας υπόθεσης, π.χ. ενός ατυχήματος. Η τεράστια ζήτηση στον κλάδο της ασφάλειας για μία τεχνολογία, όπως αυτή

RkJQdWJsaXNoZXIy NjE3Njcz